首页 >> 资源库 >> 中文 >> 专家人才

专家人才

  • 姓名: 康乐
  • 性别: 
  • 职称: 研究员
  • 学历: 博士
  • 电话: 
  • 传真: 
  • 电子邮件: lkang@ioz.ac.cn
  • 通讯地址 广州市黄埔区开源大道190号

    简历:

  • 乐,中国科学院特聘研究员,中国科学院院士、发展中国家科学院院士,美国国家科学院等7个国家和国际组织的外籍院士,是国内外著名生态基因组学专家。现任中科院北京生命科学院院长、河北大学校长。长期从事生态基因组学研究,国家“973”项目首席科学家和基金委创新团队学术带头人,也是国际上几个重要学术期刊的主编和编委。他将基因组学与生态学结合,系统研究动物的适应性和表观可塑性。在相关领域发表SCI论文200余篇,重要论文发表在Nature, Science, Science Advances, Nature Communication, PNASGenome Biology等重要刊物上,总引用万余次,是Elsevier选出的农业和生物学高被引科学家(Scopus 2014-2021)。是F1000Faculty memberAdvisory board member。从1995年起,他已经培养了90多名博士和硕士研究生,10多名博士后,许多人已经成为国家重要的学术带头人,如特殊人才计划入选者、研究员、教授、国家青年科技奖和国家优秀青年基金项目获得者等。

    研究领域:

  • 主要开展生物过敏原引起的呼吸道过敏性疾病以及相关的免疫学机理研究。围绕尘螨、蟑螂、花粉等过敏原造成的过敏性疾病发病机制的基础研究,通过建立相关动物模型及利用临床样本,在分子、细胞、基因组学水平上探索呼吸道过敏性疾病发生和发展的机制。开展综合性和交叉型前沿研究,利用综合性的平台和多种技术手段,阐明其诱发的过敏疾病的发病机理,为过敏性疾病预防、诊断和治疗性疫苗的研究奠定理论基础。

    承担科研项目情况:

  • 1.国家自然科学基金委项目“作为昆虫嗅觉进化重要节点的飞蝗嗅觉编码与处理机理研究”项目负责人;

    2.国家自然科学基金委基础科学中心项目“生物信息流的解码与操控”项目骨干;

    3.国家自然科学基金委面上项目“飞蝗嗅觉吸引行为的神经分子机制”项目负责人;

    4.中国科学院战略性先导科技专项项目“生物互作机制的解构与设计——农业有害生物的智慧型防控”负责人。

    社会任职:

  • 2008年 国际昆虫学会 执行理事。

    2019年 国际生物科学联合会(IUBS)副主席。

    2019年 国际生物科学联合会中国委员会(CCIUBS)主席

    2022年 国际科学理事会中国委员会(ISC-China)副主席

    获奖及荣誉:

  • 2011年 何梁何利生命科学与技术进步奖

    2013年 美国昆虫学会颁发的杰出科学家奖

    2015年 第八届谈家桢生命科学奖成就奖

    2017年 国家自然科学二等奖

    2017年 中国科学院杰出成就奖

    2019年 马世骏生态科学成就奖

    2021年 国际化学生态学会西弗斯坦-西蒙尼奖

    代表论著:

  • 1.       Wang, Y., Zhang, Y., Lou, H., Wang, C., Ni, M., Yu, D., Zhang, L., & Kang, L. (2022). Hexamerin-2 Protein of Locust as a Novel Allergen in Occupational Allergy. Journal of Asthma and Allergy, 15, 145–155. doi.org/10.2147/JAA.S348825

    2.       Guo, X., Yu, Q., Chen, D., Wei, J., Yang, P., Yu, J., Wang, X., & Kang, L. (2020). 4-Vinylanisole is an aggregation pheromone in locusts. Nature584(7822), 584–588. doi.org/10.1038/s41586-020-2610-4

    3.       Wang, Y., Tong, X., Yuan, S., Yang, P., Li, L., Zhao, Y., & Kang, L. (2022). Variation of TNF modulates cellular immunity of gregarious and solitary locusts against fungal pathogen Metarhizium anisopliaeProc. Nat. Acad. Sci. (USA)119(6), e2120835119.  doi.org/10.1073/pnas.2120835119

    4.       Wang, H., Jiang, F., Liu, X., Liu, Q., Fu, Y., Li, R., Hou, L., Zhang, J., He, J., & Kang, L. (2022). Piwi/piRNAs control food intake by promoting neuropeptide F expression in locusts. EMBO Reports23(3), e50851. doi.org/10.15252/embr.202050851

    5.       He, J., Zhu, Y.N., Wang, B., Yang, P., Guo, W., Liang, B., Jiang, F., Wang, H., Wei, Y., and Kang, L. (2022). piRNA-guided intron removal from pre-mRNAs regulates density-dependent reproductive strategy. Cell Report, 39, 110593.

    6.       Du, B., Ding, D., Ma, C., Guo, W., & Kang, L. (2022). Locust density shapes energy metabolism and oxidative stress resulting in divergence of flight traits. Proc. Nat. Acad. Sci. (USA)119(1), e2115753118. doi.org/10.1073/pnas.2115753118

    7.       Wei, J., Shao, W., Cao, M., Ge, J., Yang, P., Chen, L., Wang, X., & Kang, L. (2019). Phenylacetonitrile in locusts facilitates an antipredator defense by acting as an olfactory aposematic signal and cyanide precursor. Science Advances, 5(1), eaav5495. doi.org/10.1126/sciadv.aav5495

    8.       Yang, M., Wang, Y., Liu, Q., Liu, Z., Jiang, F., Wang, H., Guo, X., Zhang, J., & Kang, L. (2019). A β-carotene-binding protein carrying a red pigment regulates body-color transition between green and black in locusts. eLife8, e41362. doi.org/10.7554/eLife.41362

    9.       Guo, X., Ma, Z., Du, B., Li, T., Li, W., Xu, L., He, J., & Kang, L. (2018). Dop1 enhances conspecific olfactory attraction by inhibiting miR-9a maturation in locusts. Nature Comm.9(1), 1193. doi.org/10.1038/s41467-018-03437-z.

    10.    Ding, D., Liu, G., Hou, L., Gui, W., Chen, B., & Kang, L. (2018). Genetic variation in PTPN1 contributes to metabolic adaptation to high-altitude hypoxia in Tibetan migratory locusts. Nature Comm.9(1), 4991. doi.org/10.1038/s41467-018-07529-8

    11.    Chen, B., Zhang, B., Xu, L., Li, Q., Jiang, F., Yang, P., Xu, Y., & Kang, L. (2017). Transposable Element-Mediated Balancing Selection at Hsp90 Underlies Embryo Developmental Variation. Molecular Biology and Evolution34(5), 1127–1139. doi.org/10.1093/molbev/msx062

    12.    He, J., Chen, Q., Wei, Y., Jiang, F., Yang, M., Hao, S., Guo, X., Chen, D., & Kang, L. (2016). MicroRNA-276 promotes egg-hatching synchrony by up-regulating brm in locusts. Proc. Nat. Acad. Sci. (USA)113(3), 584–589. doi.org/10.1073/pnas.1521098113

    13.    Yang, M., Wang, Y., Jiang, F., Song, T., Wang, H., Liu, Q., Zhang, J., Zhang, J., & Kang, L. (2016). miR-71 and miR-263 Jointly Regulate Target Genes Chitin synthase and Chitinase to Control Locust Molting. PLoS Genetics12(8), e1006257. doi.org/10.1371/journal.pgen.1006257

    14.    Wang, X., & Kang, L. (2014). Molecular mechanisms of phase change in locusts. Annual Review of Entomology59, 225–244. doi.org/10.1146/annurev-ento-011613-162019

    15.    Wang, X., Fang, X., Yang, P., Jiang, X., Jiang, F., Zhao, D., Li, B., Cui, F., Wei, J., Ma, C., Wang, Y., He, J., Luo, Y., Wang, Z., Guo, X., Guo, W., Wang, X., Zhang, Y., Yang, M., Hao, S., … Kang, L. (2014). The locust genome provides insight into swarm formation and long-distance flight. Nature Comm.5, 2957. doi.org/10.1038/ncomms3957

    16.    Yang, M., Wei, Y., Jiang, F., Wang, Y., Guo, X., He, J., & Kang, L. (2014). MicroRNA-133 inhibits behavioral aggregation by controlling dopamine synthesis in locusts. PLoS Genetics10(2), e1004206. doi.org/10.1371/journal.pgen.1004206

    17.    Wang, Y., Yang, P., Cui, F., & Kang, L. (2013). Altered immunity in crowded locust reduced fungal (Metarhizium anisopliae) pathogenesis. PLoS Pathogens9(1), e1003102. https://doi.org/10.1371/journal.ppat.1003102

    18.    Cease, A. J., Elser, J. J., Ford, C. F., Hao, S., Kang, L., & Harrison, J. F. (2012). Heavy livestock grazing promotes locust outbreaks by lowering plant nitrogen content. Science335(6067), 467–469. doi.org/10.1126/science.1214433

    19.    Wu, R., Wu, Z., Wang, X., Yang, P., Yu, D., Zhao, C., Xu, G., & Kang, L. (2012). Metabolomic analysis reveals that carnitines are key regulatory metabolites in phase transition of the locusts. Proc. Nat. Acad. Sci. (USA)109(9), 3259–3263. doi.org/10.1073/pnas.1119155109

    20.    Ma, Z., Guo, W., Guo, X., Wang, X., & Kang, L. (2011). Modulation of behavioral phase changes of the migratory locust by the catecholamine metabolic pathway. Proc. Nat. Acad. Sci. (USA)108(10), 3882–3887. doi.org/10.1073/pnas.1015098108

    21.    Guo, W., Wang, X., Ma, Z., Xue, L., Han, J., Yu, D., & Kang, L. (2011). CSP and takeout genes modulate the switch between attraction and repulsion during behavioral phase change in the migratory locust. PLoS Genetics7(2), e1001291. doi.org/10.1371/journal.pgen.1001291

    22.    Wei, J., Wang, L., Zhao, J., Li, C., Ge, F., & Kang, L. (2011). Ecological trade-offs between jasmonic acid-dependent direct and indirect plant defences in tritrophic interactions. New Phytologist189(2), 557–567. doi.org/10.1111/j.1469-8137.2010.03491.x

    23.    Zhang, Y., Wang, X., & Kang, L. (2011). A k-mer scheme to predict piRNAs and characterize locust piRNAs. Bioinformatics27(6), 771–776. doi.org/10.1093/bioinformatics/btr016

    24.    Wei, Y., Chen, S., Yang, P., Ma, Z., & Kang, L. (2009). Characterization and comparative profiling of the small RNA transcriptomes in two phases of locust. Genome Biology10(1), R6. doi.org/10.1186/gb-2009-10-1-r6

    25.    Kang, L., Chen, X., Zhou, Y., Liu, B., Zheng, W., Li, R., Wang, J., & Yu, J. (2004). The analysis of large-scale gene expression correlated to the phase changes of the migratory locust. Proc. Nat. Acad. Sci. (USA), 101(51), 17611–17615. doi.org/10.1073/pnas.0407753101